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Abstract

We present a new approach to simulating unsteady heat transfer, with only very few degrees of freedom, by em-

ploying directly eigenmodes extracted from DPIV/DPIT experimental data. In particular, we formulate Galerkin low-

dimensional systems of the coupled Navier–Stokes and energy equations using hierarchical empirical eigenfunctions

extracted from an ensemble of velocity and temperature snapshots. We demonstrate that even severely truncated

Galerkin representations (two velocity modes and four temperature modes) produce simulations capable of capturing

the dynamics of the flow and heat transfer. This finding is documented by applying proper orthogonal decomposition to

water flow past a heated circular cylinder at Reynolds number 610. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The recent rapid developments in quantitative imag-

ing in flow and heat transfer problems offer the possi-

bility of integrating seamlessly numerical simulation

and experiment. In the new computational paradigm,

simulation and experiment could become a symbiotic

feedback system for effective heat transfer control

applications. The degree of integration and form of

feedback will depend critically on the efficiency of the

simulation. To this end, efficient low-dimensional sys-

tems that represent accurately the short-term dynamics

of the coupled flow-heat transfer system need to be em-

ployed for real time control. In this paper, we address

this subject and develop an approach that will make use

of instantaneous and simultaneous measurements of the

velocity and temperature fields.

The feasibility for flow model reduction can be

proved rigorously only for a few simple flows [1], but

experimental and numerical evidence suggests that many

complex flows exhibit low-dimensionality and can po-

tentially be described by approximate inertial manifolds,

e.g. [2]. In [3] a reduced dynamical system for thermal

convection was developed and employed to predict ac-

curately the transition process as a function of the

Rayleigh number. Also, in [4] a low-dimensional system

was found to be very effective for the inverse natural

convection problem, which requires repeated numerical

solutions of Boussinesq’s equation. From these and

related studies, it is clear that the key element of a low-

dimensional system is its representation through hier-

archical and most energetic scales.

The specific problem we consider in this paper is flow

and heat transfer past a heated circular cylinder. Earlier

numerical work on flows past isothermal cylinders has

shown that the wake dynamics in flow past a cylinder

exhibits low-dimensionality for both laminar and tur-

bulent states [2,5,6]. This is also true for convective heat

transfer as demonstrated in Fig. 1, which is obtained

based on results from high resolution direct numerical

simulations (DNSs) [7]. The Peclet number is Pe ¼ 2730

and the Reynolds number is Re ¼ 3900 corresponding to

a turbulent wake. In the figure, we plot the eigenvalues

of the most energetic modes obtained from an ensemble

of snapshots of the system at the aforementioned pa-

rameter values. The eigenvalues are normalized so that

they represent percentage of total energy of the system.

We see that only a few modes contribute significantly to

the energy while the rest of the modes decay quickly.

This indicates that the turbulent wake, at least in this

regime, can be represented by only a few degrees of
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freedom. Therefore, it can be described by a relatively

small set of appropriate basis functions.

The particular approach followed in [5] was based on

empirical eigenfunctions derived by proper orthogonal

decomposition (POD), while the work in [8] was based

on eigenfunctions of a generalized Stokes operator. A

comprehensive comparison of these approaches is pre-

sented in [9].

Here we will employ POD and work directly with

experimental data. POD is a methodology that first

identifies the most energetic modes in an evolving sys-

tem, and second provides a means of obtaining a low

dimensional description of the system’s dynamics.

Background material for the POD approach can be

found in the review article in [10]. We adopt the imple-

mentation based on the method of snapshots developed

by Sirovich and co-workers [11]. It has been used so far

in conjunction with experimental (e.g. [12–14]) as well as

with numerical studies (e.g. [3,5,11,15,16]). However, in

previous experiments only point measurements were

employed but not images (i.e. snapshots) of vector fields.

In the experiments reported here, simultaneous velocity

and temperature snapshots were obtained by digital

particle image velocimetry (DPIV) and digital particle

image thermometry (DPIT), respectively [17–19].

The paper is organized as follows:We first describe the

DPIV/T raw data and associated processing required to

recover the missing data and to produce a divergence-free

basis.We then extract PODmodes from the experimental

data and from companion DNSs, and compare their

corresponding structure. Subsequently, we perform POD

simulations based on Galerkin projections and the ex-

perimentally obtained eigenfunctions, and we present

results that document the effectiveness of this approach.

We conclude with a summary and a discussion of em-

ploying alternative projections, such as the non-linear

Galerkin method.

2. Extraction of POD modes

We have obtained POD modes for the velocity and

temperature fields from data sets corresponding to both

DPIV and DPIT experiments. In addition, we have

performed two-dimensional DNSs and extracted corre-

sponding modes. The simulations were based on spec-

tral/hp element discretization at Reynolds number

Re ¼ 610 using the code described in [2]; see also [20].

The experiments were performed in a water tunnel

facility at Graduate Aeronautical Laboratories at the

California Institute of Technology. The water tunnel test

section has a cross-sectional area of 15 cm� 15 cm. The

freestream velocity can be varied from 3 to 50 cm/s. The

freestream temperature can be raised by a bank of

staggered heating rods located in the inlet pipe to the

diffuser section and can be lowered by a re-circulating

chiller (Neslab RTE-110) at the downstream section of

the test section. Using a closed-loop temperature con-

troller (Tronac PTC-41), the mean freestream tempera-

ture can be maintained within �0:02 �C at 5 cm/s or

within �0:01 �C at 40 cm/s.

To measure the velocity and temperature of the flow

field, the technique of digital particle image velocimetry/

thermometry (DPIV/T) is employed. The technique,

which was originally developed by Dabiri and Gharib

[18] and further improved by Park et al. [19], works

by seeding the flow with thermochromic liquid crystal

Nomenclature

aj velocity modal coefficients

Re Reynolds number

bj temperature modal coefficients

T temperature field

d cylinder diameter

T0 time-average temperature

N number of velocity snapshots

T1 free-stream temperature

M number of temperature snapshots

U time-average velocity

Pe Peclet number

V velocity vector field

Pr Prandtl number

V1 free-stream velocity

Fig. 1. Eigenspectrum of most energetic temperature modes of

turbulent wake. DNS at Re ¼ 3900 and Pe ¼ 2730.
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(TLC) particles. The TLC particles change their reflect

wavelength (i.e., color) as function of temperature. By

illuminating a two-dimensional cross-section, the ve-

locity and temperature of the flow can be deduced by

measuring the displacement and color of the TLC par-

ticles, respectively. Because a full spectrum (i.e., white)

light source is required to illuminate the TLC particles, a

xenon flashlamp assembly was used to illuminate the

flow [21]. The flashlamp assembly can be used in similar

manner as a pulsed laser to create a short-duration pulse

light sheet. The image is captured on a Sony full-frame

transfer 3-CCD (R G B; Red, Green, Blue) color camera

and then stored on a real-time digital video recorder.

For processing, the images in R G B color space are

transformed into images of H S I (Hue, Saturation, In-

tensity) color space. The intensity channel of the image

is used to run standard DPIV to compute the velocity

field [17]. To compute the temperature, the hue (i.e.

color) channel of the image is used. For each TLC

particle, a temperature is assigned by comparing its hue

value to a priori measured calibration curve of hue

versus temperature. The relative temperature uncer-

tainty of individual TLC particles can be large (roughly

10%), but the relative uncertainty at a given location in

the image can be reduced to an acceptable level (roughly

2%) by averaging the temperature of particles within a

sampling window.

The specific measurements we use here were con-

ducted for a heated circular cylinder of diameter d ¼
9:53 mm in crossflow with freestream velocity 6.4 cm/s

and temperature 25.8 �C ; the cylinder surface temper-

ature was maintained at 36.8 �C. The corresponding

Reynolds number based on the the cylinder diameter

and the freestream velocity is Re ¼ 610; the Prandtl

number is Pr ¼ 7:1. The shedding frequency is f ¼ 1:405
Hz and a total of 40 snapshots with time separation

between snapshots of 0.066 s were employed in the

analysis. The camera, which is placed approximately 2 m

from the test section, images an area of 60 mm wide by

50 mm high at the mid-span of the test section.

Typical contour plots of instantaneous streamwise

and crossflow velocities are shown in Fig. 2; temperature

contours are shown in Fig. 3. The missing velocity data

at the upper left corner is due to the shadow of the

cylinder where the illumination is too weak for the

DPIV to pick up the velocity values. The uncertainty in

the mean velocity using a 32� 32 pixel sampling win-

dow is about 1% and in the temperature is 2%. The

disturbance to the flow by the supports is minimized by

placing them outside of the two flat end-plates, which

have rounded leading edges. The distance between the

end-plates is 12.1 cm, and thus the cylinder aspect ratio

is L=d ¼ 13.

Snapshots of the velocity field obtained from DPIV

measurements had missing data because of the shadow

region as shown in Fig. 2. Specifically, data was missing

Fig. 2. Contour plots of instantaneous streamwise (a) and crossflow (b) velocity from original experimental (DPIV) data; time

t ¼ 12:4104 (in non-dimensional convective time units). The domain is shown is the DPIV window with dimensions normalized with

the cylinder diameter. DPIV measurements in the area directly above the cylinder were unobtainable because of the shadow cast by the

cylinder which was lit from underneath.

Fig. 3. Contour plots of instantaneous temperature from

original experimental (DPIT) data; time t ¼ 12:4104 (in non-

dimensional convective time units).
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in the upper left corner as well as around the cylinder.

To handle the first problem, we employed the symmetry

properties of POD modes to restore the missing data. To

deal with the second problem we interpolated the data

between the cylinder surface and the first available

points away from the wall, shown as a circle around the

cylinder. In addition, we projected the velocity data into

a divergence-free field using the Helmholtz decomposi-

tion approach; see [7].

Unlike the velocity data, the temperature data is

available in the upper left corner of the visualization

window. The covariance matrix for the temperature

field, constructed from M ¼ 40 snapshots, is computed

from

Ci;j ¼
XNx

m¼1

XNy

n¼1

T ðxm; yn; tiÞT ðxm; yn; tjÞ;

where Nx and Ny are the number of grid points in the x-

and y-direction, respectively.

Fig. 4 shows the eigenvalues of the temperature POD

modes extracted from experimental data and corre-

sponding two-dimensional DNS data. The velocity POD

eigenmode analysis shows a similar distribution, with

the important difference that for the velocity field a steep

decay occurs after the first two modes.

A comparison between the temperature POD modes

obtained experimentally (DPIT) and those obtained

from DNS is shown in Fig. 5. The agreement is only

qualitative and can be better observed in the higher

modes. The main reason for the quantitative disagree-

ment is three-dimensionality induced by the proximity of

the side walls in the experiment, in addition to intrinsic

flow three-dimensionality at this Reynolds number.

From similar comparisons of corresponding velocity

POD modes we have observed that there exists a dis-

placement of the DPIV-based modes downstream [7].

This is due to the longer formation length associated

with the relatively small aspect ratio (L=d ¼ 13) em-

ployed in the experiments; see [22,23]. In addition, there

is substantial noise in the experimental data above the

tenth mode unlike the DNS data, and this explains the

slower decay of the spectrum in the high modes.

These results suggest that in order to represent and

simulate accurately and efficiently the convective heat

transfer for this problem, we have to employ the DPIT

obtained modes as a basis in order to account directly

for all the experimental influences. We examine this

possibility in the following section.

3. Experiment-based POD simulation

3.1. Formulation

We employ a Galerkin projection of the incom-

pressible Navier–Stokes and energy equations onto these

modes in order to construct low-dimensional systems.

Let us decompose the velocity vector field V as

Vðx; tÞ ¼ UðxÞ þ uðx; tÞ;

where U is the time-averaged field. We express u as the

linear combination of the POD modes

uðx; y; tÞ ¼
XN
j¼1

/uðx; yÞajðtÞ;

vðx; y; tÞ ¼
XN
j¼1

/vðx; yÞajðtÞ;

where N is the number of velocity snapshots. The

Galerkin projection of the Navier–Stokes equation givesZ
/ � oV

ot

�
þ ðV � rÞVþrp 
 1

Re
r2V

�
dx ¼ 0; ð1Þ

from which we obtain a system of ordinary differential

equations (ODEs), which can be solved using Runge–

Kutta integration

oajðtÞ
ot

¼ f ðaÞ: ð2Þ

The detailed velocity formulation is presented in [7]. The

temperature equation is formulated similarly with the

temperature fluctuations T ðx; tÞ expressed as a finite

expansion of bi-orthonormal functions, i.e.
Fig. 4. Comparison of temperature POD eigenvalues between

experimental data and DNS data.
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T ðx; tÞ ¼
XM
m¼1

bmvmðxÞnmðtÞ; ð3Þ

where vmðxÞ are orthonormal POD modes of tempera-

ture in the space domain and nmðtÞ are orthonormal ei-

genfunctions in the time domain. In Appendix A we give

the details of this projection for the interested reader.

3.2. Results

We now compare the POD simulation results with

the experimental data. In Fig. 6 we plot the time histo-

ries of the velocity modes ajðtÞ obtained by the POD

simulation and by the projection of the experimental

data. We see that good agreement is obtained. In Fig. 7

we compare the POD predictions with corresponding

projected experimental data for the streamwise velocity.

We see that the differences are very small. We also note

the similarity with the instantaneous raw data at the

same time instant shown in Fig. 2. More systematic

comparisons at different locations downstream of the

cylinder of both streamwise and crossflow velocity pro-

files also show very good agreement [7]. The POD pre-

dictions are less accurate closer to the outflow boundary.

A similar comparison is performed in Fig. 8 for the

temperature field at time t ¼ 12:4104. We see that the

differences between the simulation results and the pro-

jection results are very small, and that both agree with

the instantaneous raw temperature data at the same time

instant shown in Fig. 3. A more quantitative comparison

between the three sets of data is presented in Fig. 9 that

shows instantaneous profiles at downstream locations

Fig. 5. Comparison between DPIT-based and DNS-based POD modes of the temperature field.
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x=d ¼ 1:4337 and x=d ¼ 2:2377. There is a noticeable

disagreement with the raw data around the centerline of

the wake. Finally, a comparison of the histories of the

modal coefficients of the temperature over a time of

about four shedding periods with the projected experi-

mental data is shown in Fig. 10. We see that overall the

POD DPIV/T-based simulation does a very good job in

capturing the short-term dynamics of the coupled flow-

heat transfer problem even with a very small expansion

consisting of two velocity and four temperature modes.

4. Summary and discussion

We have presented a low-dimensional Galerkin ap-

proximation of the Navier–Stokes and energy equations

in order to simulate convective heat transfer in flow past

a heated circular cylinder. The novelty of the method is

the direct use of velocity and temperature fields obtained

experimentally using DPIV and DPIT. The DPIV/T

data form an ensemble based on which we extracted the

best representation of the velocity and temperature fields

(in the average sense) using POD.

An important finding for the cylinder convective heat

transfer we study at Re ¼ 610 is that only two velocity

and four temperature POD modes are sufficient to de-

scribe its short-term dynamics with reasonable accu-

racy. However, for long-time integration, a Galerkin

POD system diverges independently of the number of

Fig. 8. Comparison of temperature contours of POD simulation and projected experimental data at t ¼ 12:4104.

Fig. 7. Comparison of streamwise velocity contours of POD simulation and projected experimental data at t ¼ 12:4104.

Fig. 6. Comparison of POD simulation and projection using

only two DPIV-based POD modes. The time is in non-dimen-

sional convective units.
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POD modes employed. This is shown in Fig. 11 that

shows the time histories of the four temperature modes

for about ten shedding periods. A slow increase in am-

plitude as time increases indicates that the coupled sys-

tem diverges asymptotically.

This may not be so important from the practical

point of view, especially for control-type applications

where the short-term dynamics is involved. However, it

is important from the theoretical point of view, and also

in applications where a stationary state of the coupled

system is sought. The reason that this divergence occurs,

at least for the problem considered here, is attributed to

inaccuracy of the high modes obtained experimentally.

More specifically, the addition of high modes pollutes

the dynamics of the lower more energetic modes due to

Fig. 10. Comparison of POD simulation and projection using

only two velocity DPIV-based POD modes and four DPIT-

based temperature modes. The time is in non-dimensional

convective units.

Fig. 11. Histories of temperature modal coefficients for long-

time integration.

Fig. 9. Comparison of instantaneous temperature profiles of POD simulation, raw data and projected experimental data at time

t ¼ 12:4104 at x=d ¼ 1:4337 (a) and x=d ¼ 2:2377 (b).
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the noisy structure of such modes inherited from the

experimental data.

However, the high modes can be employed to con-

struct an approximate inertial manifold following the

non-linear Galerkin method [24,25]. In particular, we

consider the first few (lower) velocity modes, which

primarily govern the dynamics of the flow, to be the

dominus modes. We then think of the higher modes as

servus modes, in a sense that they will follow the slow

oscillations of the dominus (lower) modes. The higher

and faster servus modes will quickly relax onto a man-

ifold (‘‘the steady manifold’’) parameterized by the do-

minus modes. The results of this non-linear Galerkin

projection for the velocity field are shown in Fig. 12.

Specifically, we compare the time histories of the ve-

locity field corresponding to two modes only as before

(straight Galerkin projection) with the corresponding

results from a non-linear Galerkin projection involving

the same two dominus modes and four servus modes.

We see that the non-linear Galerkin projection leads to

an asymptotically stable dynamical system without the

need for employing explicitly ad hoc eddy viscosity

models.

The direct use of experimental data in simulation is

not new, however the use of simultaneous velocity and

temperature field data and corresponding low-dimen-

sional coupled simulations, as presented here, is new.

This integration of experimental data and numerical

simulation in conjunction with the dramatic reduction in

the required degrees of freedom allow for potential

steering of the experimental measurements in real time.

Moreover, they provide the capability of dynamic sen-

sitivity analysis of the most important input parameters,

and predictions of new states away from the state tested

in the experiments. New holographic imaging and three-

dimensional DPIV/T techniques will lead to extensions

of the formulation presented here to three-dimensions.
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Appendix A. Temperature Galerkin projection

We define the velocity field Vðx; tÞ and the tempera-

ture field T̂T ðx; tÞ in a dimensionless form:

Uf ¼ V

V1
; Tf ¼ T̂T 
 T1

Tc 
 T1
; ðA:1Þ

where V1 is the inlet fluid velocity, Tc is the temperature

of the cylinder and T1 is the bulk temperature of the

fluid.

Let us express the dimensionless velocity field

Uf ðx; tÞ and the dimensionless temperature field Tf ðx; tÞ
as the sum of the mean and the time-varying part, i.e.,

Uf ðx; tÞ ¼ UðxÞ þ uðx; tÞ ðA:2Þ

and

Tf ðx; tÞ ¼ T0ðxÞ þ T ðx; tÞ: ðA:3Þ

The averages in Eqs. (A.2) and (A.3) are temporal av-

erages, i.e. the field is temporally centered. The velocity

fluctuations uðx; tÞ can be expressed as before, as a finite

expansion of bi-orthonormal functions, i.e.,

uðx; tÞ ¼
XN
m¼1

an/nðxÞ;wnðtÞ; ðA:4Þ

where /nðxÞ are POD modes in the space domain and

wnðtÞ are orthonormal eigenfunctions in the time do-

main. The temperature fluctuations T ðx; tÞ can be ex-

pressed as a finite expansion of bi-orthonormal

functions, i.e.

T ðx; tÞ ¼
XM
m¼1

bmvmðxÞnmðtÞ; ðA:5Þ

where vmðxÞ are orthonormal POD modes of tempera-

ture in the space domain and nmðtÞ are orthonormal ei-

genfunctions in the time domain.

Fig. 12. Histories of velocity modal coefficients for long-time

integration using Galerkin (solid-line) and non-linear Galerkin

projections (dash-line).
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The heat equation can be expressed as

oTf
ot

þUf � rTf ¼ 1

Pe
r2Tf : ðA:6Þ

Let us project the heat equation onto the POD modes

space

vj;
oTf
ot

�
þUf � rTf 


1

Pe
r2Tf

�
¼ 0; j ¼ 1; . . . ;M ;

ðA:7Þ

where the operator � means pointwise product in the

Cartesian coordinates and the operator ( , ) means the

inner product in the POD space.

Eq. (A.7) can be rewritten in the following way:

vj;
oTf
ot

� �
þ ðvj;Uf � rTf Þ 
 vj;

1

Pe
r2Tf

� �
¼ 0;

j ¼ 1; . . . ;M : ðA:8Þ

Let us consider the first term of Eq. (A.8). By employing

Eqs. (A.3) and (A.5), the first term of Eq. (A.8) becomes

vj;
oTf
ot

� �
¼ vj;

oT0ðxÞ
ot

�
þ oT ðx; tÞ

ot

�

¼ vjðxÞ;
XM
m¼1

bmvmðxÞ
dnmðtÞ
dt

 !
;

j ¼ 1; . . . ;M : ðA:9Þ

Since the POD modes are orthonormal, Eq. (A.9) can be

rewritten as

vj;
oTf
ot

� �
¼ bj

dnjðtÞ
dt

; j ¼ 1 . . .M : ðA:10Þ

Let us consider now the second term of Eq. (A.8). By

employing Eqs. (A.2)–(A.5), the second term of Eq.

(A.8) can be rewritten as

ðvj;Uf � rTf Þ
¼ ðvj; ðUþ uÞ � rðT0 þ T ÞÞ
¼ ðvj;U � rT0 þU � rT þ u � rT0 þ u � rT Þ
¼ ðvjðxÞ;UðxÞ � rT0ðxÞÞ

þ vjðxÞ;UðxÞ �
XM
m¼1

bmrvmðxÞnmðtÞ
 !

þ vjðxÞ;
XN
n¼1

an/nðxÞwnðtÞ � rT0ðxÞ
 !

þ vjðxÞ;
XN
n¼1

XM
m¼1

an/nðxÞwnðtÞ � rðbmvmðxÞnmðtÞÞ
 !

;

j ¼ 1; . . . ;M : ðA:11Þ

Let us consider now the third term of Eq. (A.8). By

employing Eqs. (A.3) and (A.5), the third term of Eq.

(A.8) can be rewritten as

vj;
1

Pe
r2Tf

� �
¼ vj;

1

Pe
r2ðT0

�
þ T Þ

�

¼ vjðxÞ;
1

Pe
r2T0ðxÞ

� �

þ vjðxÞ;
1

Pe

XM
m¼1

bmr2vmðxÞnmðtÞ
 !

;

j ¼ 1; . . . ;M : ðA:12Þ

The first term on the right-hand side of Eq. (A.12) can

be rewritten as

vjðxÞ;
1

Pe
r2T0ðxÞ

� �
¼ 1

Pe

Z
V

vjðxÞr2T0ðxÞdx;

j ¼ 1; . . . ;M : ðA:13Þ

Integrating equation (A.13) by parts we obtain

1

Pe

Z
V
r � ðvjðxÞrT0ðxÞÞdx
 1

Pe

Z
V
rvjðxÞ � rT0ðxÞdx;

ðA:14Þ

and by using the Gauss’s theorem, Eq. (A.14) can be

rewritten as

1

Pe

Z
oV

vjðxÞrT0ðxÞ � ndx
 1

Pe

Z
V
rvjðxÞ � rT0ðxÞdx:

ðA:15Þ

Since the heat flux on the boundary is zero and the

temperature of the cylinder surface is zero, the first term

of (A.15) is zero and (A.13) becomes

vjðxÞ;
1

Pe
r2T0ðxÞ

� �
¼ 
 1

Pe

Z
V
rvjðxÞ � rT0ðxÞdx:

ðA:16Þ

The second term on the right-hand side of Eq. (A.12)

can be rewritten as

vjðxÞ;
1

Pe

XM
m¼1

bmr2vmðxÞnmðtÞ
 !

¼ 1

Pe

XM
m¼1

bmnmðtÞ
Z
V

vjðxÞr2vmðxÞdx;

j ¼ 1; . . . ;M : ðA:17Þ

Integrating by parts equation (A.17) we obtain

1

Pe

XM
m¼1

bmnmðtÞ
Z
V
r � ðvjðxÞrvmðxÞÞdx

�



Z
V
rvjðxÞ � rvmðxÞdx

�
; ðA:18Þ

and by using the Gauss theorem, Eq. (A.18) can be re-

written as

X. Ma et al. / International Journal of Heat and Mass Transfer 45 (2002) 3517–3527 3525



1

Pe

XM
m¼1

bmnmðtÞ
Z
oV

vjðxÞrvmðxÞ � ndx
�



Z
V
rvjðxÞ � rvmðxÞ

�
dx: ðA:19Þ

Since the heat flux on the boundary is zero and the

temperature of the cylinder surface is zero, the first term

of (A.19) is zero and (A.17) becomes

vjðxÞ;
1

Pe

XM
m¼1

bmr2vmðxÞnmðtÞ
 !

¼ 
 1

Pe

XM
m¼1

bmnmðtÞ
Z
V
rvjðxÞ � rvmðxÞÞdx;

j ¼ 1; . . . ;M : ðA:20Þ

Now, substituting Eqs. (A.10), (A.11), (A.16) and (A.20)

in Eq. (A.8) we obtain the following for the unknowns

njðtÞ:

bj

dnjðtÞ
dt

þ ðvjðxÞ;UðxÞ � rT0ðxÞÞ

þ vjðxÞ;UðxÞ �
XM
m¼1

bmrvmðxÞnmðtÞ
 !

þ vjðxÞ;
XN
n¼1

an/nðxÞwnðtÞ � rT0ðxÞ
 !

þ vjðxÞ;
XM
m¼1

XN
n¼1

an/nðxÞwnðtÞ � rðbmvmðxÞnmðtÞÞ
 !

þ 1

Pe
ðvjðxÞ;rT0ðxÞÞ

þ 1

Pe

XM
m¼1

bmnmðtÞðrvjðxÞ;rvmðxÞÞ ¼ 0;

j ¼ 1; . . . ;M : ðA:21Þ

We solved Eq. (A.21) with a fourth-order Runge–Kutta

method.
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